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A growing body of recent work has shown the feasibility of brain and body sensors as input to interactive
systems. However, the interaction techniques and design decisions for their effective use are not well defined.
We present a conceptual framework for considering implicit input from the brain, along with design principles
and patterns we have developed from our work. We also describe a series of controlled, offline studies that
lay the foundation for our work with functional near-infrared spectroscopy (fNIRS) neuroimaging, as well
as our real-time platform that serves as a testbed for exploring brain-based adaptive interaction techniques.
Finally, we present case studies illustrating the principles and patterns for effective use of brain data in
human–computer interaction. We focus on signals coming from the brain, but these principles apply broadly
to other sensor data and in domains such as aviation, education, medicine, driving, and anything involving
multitasking or varying cognitive workload.
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1. INTRODUCTION

As computing systems become increasingly complex and intelligent, the role and expec-
tations of the human in the computer system change as well. With recent advancements
in computer processing speed, algorithm sophistication, and autonomy capabilities, we
would expect the advanced human–computer system to be more efficient and effective.
However, these advancements in computing have also led to increased demands on
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people to keep up with vast amounts of data being generated and to perform numerous
simultaneous tasks. We now see bottlenecks in systems and errors made due to the
limited perceptual and communication capabilities of the human, whose abilities have
remained relatively stagnant. Computer systems have a limited ability to detect the
full spectrum of information that is naturally and effortlessly generated by the human
during computer usage, and thus do not know when to throttle information output.

For example, during natural communication, humans generate accompanying visual
and auditory cues that supplement their dialogue and allow the other part to adapt
behavior appropriately. At the same time, several physiological changes occur that
may or may not be detected by the other person. During human–computer interaction,
humans may also generate these additional signals automatically, but there is lim-
ited support for the computer to detect and utilize this information. Detecting these
signals in real time and incorporating them into the user interface could improve the
communication between the computer and the human user with little additional effort
required of the user [Lee and Tan 2006; Tan 2006; Cutrell and Tan 2008; Zander et al.
2008]. This communication improvement would lead to technology that is more effec-
tive because it supports the user’s changing cognitive state. Such improvements are
increasingly valuable as technology becomes more powerful and pervasive while our
cognitive abilities do not change considerably.

In order to automatically infer the user’s changing cognitive state in real time,
researchers have explored performance data, interaction history (e.g., keystrokes), and
environmental context to assess the user’s current state [Fogarty, Hudson and Lai 2004;
Hudson et al. 2003; Starner, Schiele and Pentland 1998], while others use computer
vision to detect facial expressions or other behavioral measures. Physiological measures
are also emerging as continuous indicators of cognitive state changes [Fairclough 2009;
Mandryk, Atkins and Inkpen 2006; Nacke et al. 2011]. Brain imaging and brain sensing
techniques aim to get close to the source by looking at changes in brain activity during
task performance [Grimes et al. 2008; Hirshfield et al. 2009, Zander et al. 2010] and
are becoming realistic tools for HCI research.

With brain, body, behavioral, and environmental sensors, it is now possible to capture
subtle changes in the user’s cognitive state in real time. This opens up new doors in
human–computer interaction research. This information can be used as continuous
input to interactive systems, making the systems more in sync with the user, providing
appropriate help and support when needed. However, brain, body, and other sensor
data differ from most existing input modalities (e.g., mouse, keyboard) because they do
not directly manipulate a device. To achieve this goal, the interactive system must be
designed carefully to take advantage of this more subtle new class of input, leading to
implicit interfaces.

In this article, we present a conceptual framework for considering implicit input from
the brain, along with design principles and patterns we have developed from our work
in this area. These have emerged from investigations into the potential of functional
near-infrared spectroscopy (fNIRS) brain sensing in interactive systems. To provide
context, we begin by describing a series of controlled, offline fNIRS studies that lay
the foundation for real-time brain-based systems. These studies illustrate the types of
cognitive states that can be measured reliably with fNIRS as well as the best practices
and tradeoffs in fNIRS data analysis. We then describe the real-time platform we have
built that classifies a user’s cognitive state based on brain data in real time and that
serves as a testbed for exploring brain-based adaptive interaction techniques. We then
present an overview of several examples of brain-based adaptive systems that we have
built and studied, which illustrate these principles and patterns, and demonstrate
effective use of brain data in human–computer interaction. We focus specifically on
signals coming from the brain, but these principles can be applied broadly to other
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similar sensor data, and this work has applications in many domains such as health
care, aviation, education, medicine, driving, and anything involving multitasking or
varying cognitive workload.

2. BACKGROUND

2.1. Neuroimaging Background and HCI Considerations

Noninvasive neuroimaging techniques, primarily developed for clinical settings, have
been powerful tools for understanding brain structure and function as well as for di-
agnosing brain injuries or disorders. Structural imaging techniques, such as computed
tomography (CT), generate brain images of the static structure of the brain, as well
as brain tumors and injuries. These provide valuable snapshots of the state of the
brain but are not used in brain–computer interfaces, which require measurement of
the changing state of the brain due to cognitive activity. In order to obtain this dy-
namic state information, functional neuroimaging can be used to capture changes over
time during activities. For example, functional magnetic resonance imaging (fMRI) is
widely used to generate three-dimensional images of the brain showing the blood oxy-
gen level–dependent (BOLD) hemodynamic response to stimuli and activities. These
hemodynamic changes in blood volume and oxygenation are an indirect measure of
brain activity. Similar to fMRI, positron emission tomography (PET) scans provide
three-dimensional images of blood flow, blood oxygen, and metabolic function of cells
but are mainly used for investigating organs for cancers and other diseases. fNIRS also
measures blood oxygen changes and is discussed in detail later. Unlike the hemody-
namic neuroimaging tools, electroencephalography (EEG) and magnetoencephalogra-
phy (MEG) provide a more direct measure of neuronal activity by recording electrical
signals on the scalp generated by neurons firing in the brain.

Since the neuroimaging tools described previously were originally intended for use
in clinical or laboratory settings, they often place restrictions on the patient or study
participant that are not reasonable for realistic human–computer interaction settings
[Tan and Nijholt 2010]. Besides being expensive, PET, fMRI, and MEG require subjects
to sit or lie down in unnatural positions and remain essentially motionless [Lee and
Tan 2006]. In addition, PET requires ingestion of hazardous material and fMRI exposes
subjects to loud noises that may interfere with the study [Izzetoglu et al. 2005]. Plus, the
powerful magnetic field prevents computer usage in both fMRI and MEG. These factors
make it impractical to use these techniques in a realistic interactive situation. Because
it is less intrusive, more portable, and less expensive than these other technologies,
EEG has seen wide use in BCI research. For example, it has been used to classify
tasks [Lee and Tan 2006], measure cognitive load [Grimes et al. 2008], and support
human-aided computer vision [Shenoy and Tan 2008] as well as limited communication
[Keirn and Aunon 1990; Schalk et al. 2004; Wolpaw et al. 1991]. However, it can have a
significant setup time, and electronic devices in the room can interfere with the signal.
It has limited spatial resolution but high temporal resolution. In addition, most EEG
systems require gel to be applied to the scalp, although devices are being developed
that use dry electrodes. Because these disadvantages are not prohibitive, EEG has
been the main technology used in brain–computer interface research.

2.2. Functional Near-Infrared Spectroscopy in HCI Settings

Like other neuroimaging techniques, fNIRS was designed primarily for laboratory
and clinical settings. However, restrictions such as long setup time, highly restricted
position, intolerance to movement, and other limitations that are inherent to other
brain sensing and imaging devices are not factors when using fNIRS. By using fNIRS,
researchers can have access to the user’s cognitive state in realistic HCI laboratory
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Fig. 1. A functional near-infrared spectroscopy sensor consists of light sources emitting two wavelengths of
near-infrared light as well as a light detector (right). Two sensors can be placed under a headband to monitor
oxygenation changes in the brain (left).

conditions. This section provides background on how fNIRS works, as well as consid-
erations that are particularly relevant for adopting fNIRS in HCI settings.

2.2.1. Technical Background. fNIRS is a noninvasive and lightweight device that detects
changes in oxygenated and deoxygenated blood in a region of the brain by using optical
fibers to emit near-infrared light [Chance et al. 1988]. These light sources are arranged
on a headband or cap, along with light detectors (Figure 1), making them portable, easy
to use, and quick to set up. The light sources send two wavelengths of near-infrared
light into the forehead, where it continues through the skin and bone 1 to 3cm deep
into the cortex. Biological tissues are relatively transparent to these wavelengths, but
the oxygenated and deoxygenated hemoglobin are the main absorbers of this light.
After the light scatters in the brain, some reaches the light detector on the surface.
By determining the amount of light sensed by the detector, the amount of oxygenated
and deoxygenated hemoglobin in the area can be calculated using the modified Beer-
Lambert Law [Delpy et al. 1988]. Because these hemodynamic and metabolic changes
are associated with neural activity in the brain, fNIRS measurements can be used to
detect changes in a person’s cognitive state while performing tasks.

2.2.2. Sensor Placement. The basic technology described previously is common to all
fNIRS systems, and the measured signal depends on the location of the probe. The most
common placements are on the motor cortex [Sitaram et al. 2007] and the prefrontal
cortex [Ehlis et al. 2008; Mappus et al. 2009], although other regions have also been
explored [Herrmann et al. 2008]. The sensors used in this research were designed for
the forehead, one of the most effective placements because of the absence of hair, which
absorbs light and degrades the fNIRS signal. Thus, the anterior prefrontal cortex,
which lies behind the forehead, is the main target in the studies described here. This
area of the brain deals with high-level processing [Ramnani and Owen 2004], such as
working memory, planning, problem solving, memory retrieval, and attention.

2.2.3. Hemodynamic Response Latency. An important characteristic of fNIRS data is that
the hemodynamic response being measured is a slow response that occurs over 5 to
8 seconds. This is in contrast with EEG, which measures brain activity at the mil-
lisecond level. It should be noted that some studies have reported measurement of
a fast fNIRS signal [Wolf et al. 2002], which would provide near-instantaneous mea-
surements, but it has not been extensively explored and most studies look at the slow
response. Due to this latency, it may be inappropriate to design interfaces that require
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immediate action from brain activity or to use fNIRS sensor data as direct, explicit
input to the system as has been done with EEG. Instead, the continuous recognition of
a particular cognitive state with fNIRS is suitable for use as implicit input, which is
discussed later.

2.2.4. Signal Artifacts in HCI Settings. To explore the feasibility of fNIRS use in HCI, we
previously examined whether typical human behavior (e.g., head and facial movement)
or computer interaction (e.g., keyboard and mouse usage) interfere with brain measure-
ment using fNIRS [Solovey et al. 2009]. We found that typing and mouse clicking do
not interfere with the fNIRS signal. However, it may be necessary to avoid or control
major head movements and frowns. Other artifacts such as minor head movements,
heartbeat, and respiration may be corrected using filtering. There are many types of
filtering algorithms that can help reduce the amount of noise in data (for a review,
see Tak and Ye [2014]). Methods include short separation regression [Gagnon et al.
2012], adaptive finite impulse response (FIR) filtering, Weiner filtering [Devaraj et al.
2004; Izzetoglu et al. 2005], adaptive filtering [Devaraj et al. 2004], and principal com-
ponent analysis [Huppert and Boas 2005; Matthews et al. 2008; Sitaram et al. 2007].
Matthews et al. [2008] note that FIR can be used in real time if accelerometers are
used simultaneously on the head to record head motion. The other methods are mainly
offline procedures, making them less practical for real-time systems. The guidelines
[Solovey et al. 2009] are followed in the research described in the remaining sections to
robustly detect cognitive changes for implicit input in realistic HCI laboratory settings.

2.3. Implicit Input in Human–Computer Interaction

Typically, most human–computer interaction techniques use explicit input, where the
user consciously manipulates a device (e.g., mouse or keyboard) to indicate a desired
command or action in the system. In contrast, implicit inputs are user actions or
situational contexts that the system understands as input but that were not actively
chosen by the user to interact with the system [Schmidt 2000]. For example, mobile
applications frequently use location as an implicit input to the application, which
then can improve the user experience by putting the interaction in context. Similarly,
sensors can be embedded in the environment to recognize movement of objects or
people in order to adapt the environment appropriately for the context (e.g., lights
turning on as a person enters a room). Such implicit input is fundamental to the fields
of ubiquitous computing and context-aware systems but mainly focuses on situational
and environmental context and not on cognitive state as context. With lower costs
for noninvasive brain and body sensing, we recently have seen a growing interest in
employing such sensors in interactive systems for a wide audience, providing implicit
contextual input of the user’s cognitive state and diverging from the traditional, explicit
brain–computer interaction model that has been effective for users with disabilities.

2.4. Cognitive State as Implicit Input

As brain–computer interfaces have traditionally focused on users with disabilities,
they often employ brain signals as the primary input [Blankertz et al. 2007; Kennedy
et al. 2000; Pfurtscheller, Flotzinger and Kalcher 1993; Schalk et al. 2004; Wolpaw
et al. 1991]. Users concentrate on a certain type of thought (such as imagined hand
movement) in order to explicitly control the system. This requires concentration, effort,
and training and often seems unnatural. Some require implanted electrodes in the
skull [Kennedy et al. 2000; Moore et al. 2001; Moore and Kennedy 2000] or long
training periods with limited bandwidth [Millán et al. 2004]. While these systems
provide this group of users with a valuable communication channel, they likely will not
see wider adoption due to the low bandwidth compared to other available methods for
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nondisabled users. However, there have been recent examples of brain sensing used as
explicit input for healthy users to make selections or control the interface, for example
in a game context [Kuikkaniemi et al. 2010; O’Hara, Sellen and Harper 2011] or with
a multitouch table [Vi and Subramanian 2012; Yuksel et al. 2010].

In contrast to these active and reactive BCIs [Zander et al. 2014] where users focus
on the intentional brain activity of the user, Cutrell and Tan [2008] suggested that
untrained users may benefit from systems that use pattern recognition and machine
learning to classify signals users naturally give off when using a computer system.
They suggest that the implicit commands inferred from a user’s changing brain activ-
ity may be the most promising, universal application of brain–computer interaction.
Zander’s pioneering work has laid a foundation for such passive brain–computer inter-
faces [Zander et al. 2008; Rötting et al. 2009; Zander et al. 2010; Zander and Koethe
2011; Zander and Jatzev 2012; Zander et al. 2014]. Jacob et al. [1993] anticipated the
notion of passive physiological monitoring, and recent advancements in physiological
sensors have allowed them to become feasible. With brain and physiological sensing,
the notion of implicit input extends to include the internal cognitive state of the user
as context for the interaction. Systems are now being developed that use brain and
body sensors to automatically discover aspects of the user’s cognitive state and use this
information as passive or implicit input to a system, augmenting any explicit input
from other devices and increasing the bandwidth from humans to computers [Ayaz
et al. 2013; Afergan et al. 2014a, 2014b; Derosiére et al. 2013; Grimes et al. 2008;
Hirshfield et al. 2009, 2011; Lee and Tan 2006; Zander et al. 2009]. However, there
are many challenges due to the ill-defined paradigms for implicit user interface design
as well as the inherent noise in the signals. We address both of these concerns below
by introducing design principles for user interfaces with implicit input of user state,
as well as best practices for signal processing, data reduction, feature selection, and
classification of noisy input signals for implicit user interfaces.

3. COGNITIVE STATE DETECTION WITH FNIRS

To explore the potential of fNIRS as an input modality, we have investigated its use
for reliable detection of cognitive states that have direct relevance to human–computer
interaction and have also built tools to facilitate both offline and real-time exploration
of fNIRS signals. These are described in the sections to follow to provide further back-
ground for the design considerations and case studies described in this article and as
a foundation for future work.

3.1. Offline Feasibility Studies for Cognitive State Detection

Through a series of controlled, offline studies, we have investigated cognitive states
that can be classified reliably using fNIRS data, focusing on multitasking and vary-
ing workload scenarios that have direct relevance to many HCI scenarios. To explore
cognitive workload, we used the n-back task paradigm, which has been shown to
manipulate workload. To look more specifically at multitasking scenarios, we followed
protocols developed by Koechlin et al. [1999] to induce various types of cognitive mul-
titasking behavior. These experiments are described later and are the foundation for
the real-time systems that we’ve developed. Researchers have also explored the fNIRS
response during mental arithmetic tasks [Hoshi et al. 1997], changes in workload
[Bunce et al. 2011; Herff et al. 2013; Izzetoglu 2003, 2004; Shimizu et al. 2009; St. John
et al. 2004] and affect [Leon-Carrion et al. 2006], and motor tasks [Coyle et al. 2007;
Sitaram et al. 2007].

3.1.1. Cognitive Workload (n-Back). One of the most widely used working memory tasks
is the n-back test [e.g., Gevins and Cutillo 1993; Ayaz et al. 2007, 2012; Molteni et al.
2009; McKendrick et al. 2014; Fishburn et al. 2014]. In this task, participants are
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Fig. 2. 3-back visuospatial task. Participants were instructed to respond if the current square appears at
the same location as the one presented three trials back in the sequence.

presented a sequence of stimuli and must indicate if the currently presented stimulus
is the same as the stimulus presented n steps before it, where n generally is 0, 1, or
2. The stimuli are each presented for a short period, and then participants are given
a period with no stimulus to respond. The n-back test is widely used and has been
established to incite increasing levels of short-term working memory as n increases
[Baddeley 2003; Owen et al. 2005], as well as yield distinguishable fNIRS signals
[Ayaz et al. 2007; Cui et al. 2010; Herff et al. 2013; Li et al. 2005; Peck et al. 2013]. It
has been shown in multiple studies [Mehler et al. 2009, 2012; Reimer et al. 2009] to
increase task demand on a user as n increases “without requiring direct conflict with
manual control or visual processing demands” [Mehler et al. 2009]. It has been used
in studying spatial processing, working memory demands, and training [Molteni et al.
2009; McKendrick et al. 2014; Fishburn et al. 2014].

As n increases, participants remember more stimuli, and cognitive load increases.
Two versions of this test are a visuospatial matching task (Figure 2), where shapes or
letters are presented on a screen and participants indicate matches, and an audio recall
version, where participants listen to stimuli and respond verbally with the number n
stimuli ago.

3.1.2. Cognitive Multitasking. In addition to general workload, we have investigated the
classification of cognitive multitasking states based on fNIRS data. This work builds
from experiments described in Koechlin et al. [1999, 2000] with the goal of designing
interfaces that recognize these states and behave in appropriate ways to support mul-
titasking. We extended Koechlin et al.’s work [1999] by utilizing fNIRS instead of fMRI,
which is not practical in HCI settings [Solovey et al. 2011]. Since the fNIRS sensors are
placed on the forehead, they are particularly sensitive to changes in the anterior pre-
frontal cortex, where Koechlin et al. [1999] showed distinct activation profiles during
delay, dual, and branching tasks. These states were defined as follows:

1. Branching is illustrated by the following scenario: A user is tackling a complex
programming task but is interrupted by an incoming email from her boss that is time
sensitive. It occurs when the user must “hold in mind goals while exploring and pro-
cessing secondary goals” [Koechlin et al. 1999]. It involves aspects of both the delay
task and the dual task states described next (Figure 3). Since this is challenging to
users, automatically sensing this state would be valuable to HCI.

2. Delay Task occurs when the secondary task is ignored and therefore requires little
attentional resources (e.g., A user is tackling a complex programming assignment and
at the same time gets instant messages that the user notices but ignores). The secondary
task mainly delays response to the primary task.

3. Dual Task entails frequent task switching without the need to maintain infor-
mation about the previous task (e.g., switching between responding to emails and
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Fig. 3. Branching task. Primary and secondary tasks both require attentional resources to be allocated, and
the primary task goal must be kept in mind over time.

responding to software support issues being logged). These tasks are referred to as
dual task because there are two tasks that require attentional resources. These situa-
tions could also utilize adaptive support in the user interface, but the adaptive behavior
would be distinct from that of branching.

Using fMRI for brain imaging, Koechlin et al. [1999] demonstrated that these three
multitasking activities had different signatures in the anterior prefrontal cortex, the
area that is best for measuring with fNIRS. Koechlin et al. [2000] later showed that
even during branching, there were distinct activation profiles that varied depending on
whether the participant could predict when task switching would occur or whether it
was random. The experimental setup was almost identical to the earlier study, except
that in all conditions, the branching paradigm was used. There were two experimen-
tal branching conditions and a control: random branching, predictive branching, and
control branching. We showed that these states could, in fact, be distinguished using
fNIRS as well, and that they could apply in realistic human–computer interaction
tasks [Solovey et al. 2011]. The significance of these experiments lies in the fact that
all task conditions look similar to an outside observer. They have the same stimuli and
the same possible user responses. With brain sensing, however, it became possible to
distinguish the conditions based on the distinct mental processes (and thus, distinct
blood flow patterns) elicited by each task.

In addition, the cognitive states identified in these experiments have direct rele-
vance to many HCI scenarios, particularly when a user is multitasking. Automatically
recognizing that the user is experiencing one of these states provides an opportunity
to build adaptive systems that support multitasking. For example, by recognizing that
most interruptions are quickly ignored, as in the delay condition, the system could limit
these types of interruptions or reduce their salience as appropriate. Further, if a user is
currently experiencing a branching situation, the interface could better support main-
taining the context of the primary task, whereas during dual-task scenarios this would
be unnecessary. Finally, distinguishing between predictive and random scenarios could
trigger the system to increase support when the user’s tasks become unpredictable.

3.1.3. Toward Broader Cognitive State Detection. Further research is ongoing to identify
additional cognitive states that can be detected with fNIRS. Prior fMRI studies provide
indicators for the types of tasks that may activate the region being probed and often
serve as a starting point for fNIRS work [e.g., Solovey et al. 2011]. However, activity
deep in the brain will not be detected since fNIRS sensors probe only a few centimeters
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Table I. Summary of Participants Analyzed and Trial Details

Visuospatial Visuospatial Visuospatial Cognitive
n-Back A n-Back B n-Back C Manual Task

Subjects analyzed 16 8 2 14
Sessions analyzed 16 8 10 14
Total subjects 28 16 7 14
Total sessions 28 16 35 14
Trials per session 30 16 30 30
Trial length (sec) 25 40 25 30
Sampling rate (Hz) 11.79 6.25 11.79 11.79

into the brain cortex. Finally, the placement of the probes will impact the signals
detected as described earlier.

3.1.4. Enabling Real-Time Brain Input. The preliminary offline studies build a foundation
for fNIRS-based adaptive user interfaces by illustrating significant differences in the
fNIRS signal in specific scenarios that could be used in HCI. By examining the n-back
and multitasking paradigms with fNIRS, we brought research on cognitive activity to
a system that is practical for HCI by showing that fNIRS sensors could detect states
previously studied with fMRI (which cannot be used in HCI settings). Although all
analysis was done offline, we found significant differences in the signals that suggest
that a real-time classifier may be possible. These well-defined, validated, and simple
tasks provide the basis for the calibration phase in most of our real-time studies de-
scribed later. By using validated tasks, we can build a labeled dataset of brain data
prior to running the real-time system. Based on the calibration tasks, a model can be
built to recognize distinct multitasking and high-workload states and adapt behavior
appropriately to better support the user.

3.2. Improving Feature Selection and Machine-Learning Approaches

While considerably more practical, fNIRS and EEG data can be noisy and less reli-
able than the more intrusive techniques (e.g., fMRI, MEG, surgically implanted elec-
trodes), requiring machine-learning algorithms that can handle such data. To dissect
the machine-learning process, we conducted an offline analysis of high-low workload
manipulations for 46 sessions (39 subjects) collected over four experiments. For the pur-
pose of evaluating the cleanest possible data, we focused on half of our dataset, using
the half with the highest average classification accuracy (according to eight machine-
learning algorithms operating over all evaluated features and time segments); an anal-
ysis on the full set of data yields similar conclusions but coats the dissected sources of
meaning in the datasets in more noise. All experiments tested cognitive workload and
consisted of a set of easy and hard trials in equal quantity (see Table I). The first three
experiments were visuospatial n-back experiments, while the fourth was a cognitive
manual task where users processed visual stimuli and pressed keys accordingly in a
timely manner. To assess both the quality of data and efficacy of different machine-
learning options, we conducted 46 leave-one-out cross-validations on the data, where
the data held out in each fold was a single trial (30 in three experiments and 16 in
the fourth). The machine-learning algorithm thus built a model over all but one trial,
whose class (easy or hard) it predicted, repeating this procedure until every individual
trial had supplied the testing case. In total, this resulted in 1,328 ((16+10 +14) ∗30 +
(8∗16)) unique testing cases; in other words, the listed classification accuracies rep-
resent the model trained and testing on 1,328 separate occasions. If the fNIRS data
was not indicative of the trial’s associated class, the algorithm would likely classify
roughly half of the trials correctly, and thus a classification accuracy well above 50%

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 6, Article 35, Publication date: January 2015.



35:10 E. T. Solovey et al.

Table II. Average Classification Accuracy by Algorithm

Algorithm Average
Support Vector Machine: (Weka SMO) 74.3%
Multinomial Logistic Regression (Weka) 71.7%
Support Vector Machine: LibSVM (Weka wrapper) 67.6%
Adaboost on Decision Stump (Weka) 67.6%
Logistic Model Tree (LMT, Weka) 67.6%
Simple Logistic Regression (Weka) 67.5%
Naive Bayes (Weka) 65.4%
3-Nearest Neighbor (Weka) 64.4%

Table III. Classification Accuracy by Feature

Time Full Width
Linear Standard to Absolute Absolute at Half Second Average
Slope Deviation Mininum Peak of Mean Maximum Mean of Slope Maximum Derivative Accuracy
66.3 63.6 60.4 59.9 59.3 59.0 58.4 57.5 57.1 46.8
� � 69.0
� � � 69.2
� � � � 71.3
� � � � � 70.8
� � � � � � 70.9
� � � � � � � 71.1
� � � � � � � � 71.4
� � � � � � � � � 72.5
� � � � � � � � � � 73.3

over many trials suggests the presence of class-predictive information in the datasets
and the capability of the associated algorithm to discover it. It is important to note
that the confidence interval around the chance value is affected by the number of trials
examined [Mueller-Putz et al. 2008]. What follows is a suite of evaluations on different
machine-learning algorithms in order to (1) provide basic guidelines for how to build
useful fNIRS analysis tools, (2) give deeper insight into what components of the data
inform mental state, and (3) make explicit tradeoffs to consider both for the design
of experiment and for the choice of machine-learning algorithm. In these results, the
absolute classification accuracies are not as important as the relative accuracies, which
indicate the effect of various combinations and choices of classification approach.

3.2.1. Machine-Learning Algorithms. Table II shows a comparison of different machine-
learning algorithms. Weka’s SMO support vector machine (with a polynomial kernel
and cache (1.0) parameters) outperformed the other algorithms. It is worth noting that
we examined different parameters (Weka’s RBF and Puk kernels and different sizes for
the cache) for SMO, but no combination of values led to superior results. In addition,
procedures that tailored the selection of kernel and cache to the present training set
using cross-validation had only a negligible impact on accuracy.

3.2.2. Descriptive Statistics. The second row of Table III shows the classification accura-
cies when the machine-learning algorithm is permitted to train on only one statistical
description of the time segment at each channel. The analysis indicates that linear
slope (the difference between the last and first value divided by the number of obser-
vations) appears to be the most informative way to describe the time segment and the
best starting point for analysis. The subsequent rows show accuracies when the next
most independently productive feature is added to the selection. These results reflect
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Table IV. Classification Accuracy by Time Segment

Average
1/1 1/2 2/2 1/3 2/3 3/3 1/4 2/4 3/4 4/4 1/5 2/5 3/5 4/5 5/5 Accuracy
70.1% 63.0% 66.6% 58.5% 65.5% 66.0% 57.1% 62.5% 64.9% 66.6% 56.5% 60.4% 60.4% 64.2% 65.3%
� � � - - - - - - - - - - - - 74.3%
� - - � � � - - - - - - - - - 72.9%
� - - - - - � � � � - - - - - 73.5%
� - - - - - - - - - � � � � � 73.5%
� � � � � � � � � � � � � � � 74.2%

Table V. Classification Accuracy by Channel

A-DC4 (left, 830, 3.5cm) 66.7%
B-DC8 (right, 690, 3.0cm) 66.6%
B-DC7 (right, 690, 2.5cm) 66.3%
A-DC2 (left, 830, 2.5cm) 64.1%
B-DC6 (right, 690, 2.0cm) 63.7%
B-DC5 (right, 690, 1.5cm) 63.6%
A-DC1 (left, 830, 2.0cm) 63.2%
B-DC3 (right, 830, 3.0cm) 63.0%
A-DC3 (left, 830, 3.0cm) 61.8%
A-DC7 (left, 690, 2.5cm) 61.7%
B-DC1 (right, 830, 2.0cm) 61.2%
A-DC5 (left, 690, 1.5cm) 61.1%
A-DC8 (left, 690, 3.0cm) 60.5%
B-DC2 (right, 830, 2.5cm) 59.9%
B-DC4 (right, 830, 3.5cm) 59.7%
A-DC6 (left, 690, 2.0cm) 58.8%

the intuitive phenomenon that describing the trial in terms of more statistical features
(even the least predictive ones) tends to boost accuracy.

3.2.3. Time Segments. To evaluate where in the time segment information is concen-
trated as well as determine optimal blocks for partitioning a trial, we evaluated the
performance of classifiers on individual separate windows of the dataset and multiple
aggregated windows of the dataset. In Table IV, the first row labels different windows
of the dataset, so that 1/1 stands for the whole time segment treated as one cohesive
unit and 4/5 stands for the fourth fifth of the dataset, the content starting at the 60
percentile timestamp and ending at 80%. The next row shows classification accuracies
when the algorithm only examines that particular window. These results suggest that
the task-predictive information is insulated toward the end of the trial, which is con-
sistent with the fact that the measurement technique relies on the slow movement of
blood. The rows that follow show classification accuracies when many of these time seg-
ments are aggregated together. These comparisons would suggest that it makes sense
to partition the data into subsegments, but two or three suffice. One can partition the
dataset into thirds, fourths, or fifths, but this does not buy the algorithm much new
information. Examining the whole, the first half, and the second half appears to extract
the bulk of information.

3.2.4. Channels. Most physiological sensors provide multiple channels of data. These
experiments were run on an ISS Imagent with 16 channels of fNIRS data made up of
two detectors with four linearly arranged light sources associated with each detector
(Figure 1). The source–detector distances are listed in the Table V. An analysis of
machine-learning performance on only one channel reveals that while all channels are
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independently informative, there was little difference between detectors sampling the
left versus right prefrontal cortex and between those calibrated to identify 830- versus
690-nanometer reflected light (Table V). It is, however, worth noting that the two
detectors farthest from the light source (3.5cm on the left and 3.0cm on the right) had
the highest one-channel classification accuracy, which is expected since their positions
enable them to sample the deepest neural tissue, while the shallow channels mainly
contain noise and artifacts originating closer to the skin.

3.2.5. Feature Selection and Machine-Learning Discussion. The previous experiments show
the effect of various parameter and preprocessing approaches. From this, we can rec-
ommend that a trial be broken into segments. For each channel in these segments, a
set of statistical features can be computed. In our work, we have found the highest
classification accuracy when using slope and standard deviation over a segment. For
potential performance improvements, additional features could be added such as min-
imum, time to peak, absolute of mean, mean, largest, absolute of slope, full width at
half maximum, absolute of slope, and second derivative. Using Weka’s SMO support
vector machine shows promise and can be used in classification.

This analysis suggests that even rudimentary filtering and attribute selection ap-
proaches can provide reasonable classification accuracy. Future work could focus on
expanding the feature set. In particular, a suite of features that describes amplitudes
at various frequencies on Fourier transformed segments may provide complementary
information. Other features that better approximate how the segment changes over
time are also promising candidates for a better algorithm.

3.3. Real-Time Brain Input Platform

Building from the offline investigations, we developed a real-time platform for study-
ing brain-based adaptive, implicit user interfaces. It focuses on capturing brain activity
from functional near-infrared spectroscopy sensors, but the main components can be
used for other brain and body sensors as well. This platform expands the functionality
of our Online fNIRS Analysis and Classification (OFAC) system [Girouard et al. 2010]
and Brainput system [Solovey 2012]. The system learns to identify brain activity pat-
terns occurring as a user experiences various cognitive states. It provides a continuous,
supplemental input stream to an interactive system, which uses this information to
modify its behavior to provide better support for the user. Thus, we can use noninvasive
methods to detect signals coming from the brain that users naturally and effortlessly
generate while using a computer system. By following the principles described ear-
lier, this additional information can lead to systems that respond appropriately to
changes in the user’s state. After describing the architecture of the real-time brain
input platform, we will describe applications built on top of the platform as well as
user evaluation studies demonstrating that passive brain input significantly improves
several performance metrics in various applications and domains.

In our implicit brain input platform, there are four high-level phases: baseline, cali-
bration, modeling, and classification. While similar pipelines exist for other physiolog-
ical computing systems [e.g., Zander et al. 2010], here we describe it specifically within
the context of fNIRS and highlight some of the unique design considerations necessary
to construct a real-time fNIRS classification system.

3.3.1. Baseline Phase. Collecting a baseline measure is a standard practice in fNIRS
studies and it is used for later calculating changes in the oxygenated and deoxygenated
hemoglobin values from the baseline values. Usually a baseline measure is collected for
30 to 60 seconds, and then an average baseline measure is calculated over this period.
During this period, the user is asked to relax and think of nothing while focusing on
a focal point on a computer screen. This can also be collected at intermediate points
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within a study, if it is desired to have a baseline that is closer in proximity to the
activity period.

3.3.2. Calibration Phase. In order for the system to successfully classify fNIRS data
and turn it into meaningful information for a user interface, training or calibration
data is collected. The calibration session provides brain data recorded during vali-
dated tasks to train a machine-learning classifier for the individual that will be using
the system, since there can be variation in brain processes across different people. A
participant completes a set of tasks designed to elicit understood cognitive states.
Examples of such tasks are described in Section 3.1. By performing these known
tasks repeatedly, we generate a dataset of labeled data. This dataset is used in the
modeling phase to build a machine-learning model that learns to find specific pat-
terns in this data that indicate one cognitive state or another in future, unlabeled
data.

The main architecture supports various calibration task paradigms. The only re-
quirement is that indicators designate the start and end of a trial and the label that
should be used for that trial. This may be done by following an accurately timed protocol
or by sending markers into the acquisition software to indicate the start, end, and label
for a period. The system continually reads fNIRS data from the acquisition software
(part of the ISS Boxy system). Once the end of a single training trial is indicated, a
labeled training example for the machine-learning model is generated and stored until
the end of the calibration session. A training example consists of a sequence of data
points from each of the sensor channels, so we have simultaneously collected several
sequences that together are a training example.

3.3.3. Modeling Phase. Once the calibration period has ended, the modeling phase
begins. During this phase, the baseline data and calibration data are used to-
gether to create a classification model for future brain data. The data from these
periods is preprocessed as described next and then a machine-learning model is
built.

Several preprocessing steps are taken to convert the raw data coming from the acqui-
sition software into meaningful information. Although preprocessing strategies vary
widely, we describe a set of best-practice approaches that we have found to be effective.
For each of the channels, the mean baseline value across each of the samples is taken.
This is used in both the modeling and classification phases. We then calculate the ab-
sorption coefficients for the training set, which uses the baseline measure, differential
path length factors for the two wavelengths, and source–detector distances. An elliptic
low-pass filter with a cutoff frequency of 0.025Hz, stoppage frequency of 0.03Hz, max
ripple of 3dB, and stopband attenuation of 50dB is used to filter the data. We normalize
the data by channel using a z-score. We calculate change in oxygenation for a sample
by subtracting the value of the first sample point (or the mean over a short period
before the stimulus) from all points in the sequence to look at the changes from the
same starting point. Although all trials last for the same length of time, it is possible
that the training examples could have slightly different lengths due to differences in
sampling. To ensure that all training examples have the same number of features,
the examples are shortened to the length of the shortest example in the training set.
Once all of these preprocessing steps are performed on the training data, we build a
classification model.

To build a classification model, we use Weka [Hall et al. 2009], which provides support
for numerous machine-learning classifiers. The system can be modified easily to use
any of the classification algorithms included in the Weka toolkit, and we described
results of various choices in Section 3.2. If the training set is unbalanced, the smaller
class is oversampled so that the classes are balanced before training.
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3.3.4. Real-Time Classification Phase. Once the training and modeling phases are com-
plete, the system enters the classification phase. As sensor readings are received from
the acquisition software, they are collected into a sequence of the same length as the
training examples. A sliding window is created as new data comes in, and the continu-
ous sequences of data are analyzed. Each sequence is preprocessed in the same manner
as the training data and then sent to the machine-learning classifier, which classifies
the sequence in real time. For each example, the machine-learning model predicts
which class it belongs to and can optionally give a probability value. These classifica-
tions are sent via TCP/IP to an interactive application, which can make adaptations
as necessary. Because the system is not involved with deciding on the adaptations
and when to implement adaptations, it is generalizable and can be ported to many
applications with only minimal changes.

3.3.5. Replay Mode. In addition to the normal online mode where signals are classified
and sent in real time, the system supports replay mode, which simulates the analysis
and classification of previously recorded data and is useful in experimenting with
various adaptive strategies.

4. DESIGNING IMPLICIT INTERFACES FOR PHYSIOLOGICAL COMPUTING

The platform we have developed allows us to explore adaptive behavior to find the best
strategies for use in implicit interactive systems and experimentally evaluate them.
While our work has focused on fNIRS input, implicit user interfaces utilizing brain and
body sensor data all share important characteristics and together define a new class
of user interfaces. Below, we describe the design principles and framework that has
emerged from our work in developing interactive systems with implicit fNIRS input.

4.1. Design Principles for Implicit Input

By definition, implicit input is passively obtained from the user, unlike explicit input
from devices such as a mouse or keyboard. In addition, sensor data is often noisy,
is constantly changing, and is continuous, unlike a discrete menu selection or mouse
click. Further, the machine-learning classification algorithms only provide estimates
of cognitive state, with some inherent level of uncertainty. The nature of this input
requires careful consideration to ensure successful user interface design. We outline
high-level principles that can guide development of interfaces that can take advantage
of implicit input channels such as that coming from brain and body sensors (e.g., passive
brain–computer interfaces). Many of these principles also apply to other similar noisy
input channels.

For nondisabled users, passive channels of input are most useful when augmenting
other input devices and providing a supplemental channel that indicates user state,
instead of being the primary source of input in a system. In addition, because physi-
ological data can be noisy, the adaptations must be resilient to misclassifications. One
way to address this is to test the confidence and probability of predictions in order
to influence the interface only when the system is reasonably certain of physiological
state. Because the prediction might not always be correct, a designer should avoid
irreversible ormission-critical adaptations. Instead, the adaptations must be used in a
paradigm where the benefits outweigh the costs, and where a high number of correct
adaptations can improve performance more than the damages from incorrect classifi-
cations, such as the user experiencing a loss of control. The adaptation should make
subtle, helpful changes to the interface that would not be too disruptive if the user’s
state is misinterpreted. For example, cognitive state information may be used to change
future interactions or to prechoose defaults, rather than to make prominent changes
directly to the current display. Other potential types of interfaces would be those with
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multiple views or with limited screen real estate. The brain data could be used to make
tradeoffs based on the user’s cognitive state. Interface adaptations, which run the risk
of causing confusion and adding to the user’s workload, must be designed carefully to
avoid performance decrements. In particular, care must be taken to avoid surprising or
confusing the user by making unexpected changes to the interface. This calls for care
and subtlety in the interface design.

4.2. Adaptive Strategies in Interactive Systems

Based on the high-level principles described above, we propose a conceptual framework
in which adaptations are categorized by their target functional level and immediacy.
Specifically, adaptations can affect the semantic or syntactic levels of a system [Foley
and Van Dam 1982] and can be implemented as either immediate or future changes
to the interface. This framework is meant for guidance for developers creating novel
adaptive systems, rather than the establishment of a rigid organization system.

The semantic level of a system refers to the functions performed and the system’s
internal values and parameters, while the syntactic level of a system refers to the
sequence of inputs and outputs but not the values of these operations [Foley and Van
Dam 1982; Jacob 1983, 1986]. Thus, we can think of the semantic changes as ones that
affect the behavior of the system and the goals and actions of a user, whereas syntactic
changes are based on the user interface and do not modify the content of the application
[Jacob 2001].

The interactive system can be adjusted in two different levels of immediacy. Imme-
diate changes affect the elements currently on screen or being interacted with, while
future changes adjust variables and elements that have not yet appeared. Immediate
adjustments have the advantage of mapping directly to the user’s experience and hav-
ing a direct effect. However, they need to be done subtly in order to not disrupt the user
experience. Future changes can be effective because stronger changes to the system
may occur without surprising the user. However, future changes to the state of the
system may be difficult to implement and evaluate.

We propose that these strategies can be implemented in conjunction with each other
to produce distinct adaptive strategies for interactive systems [Afergan 2014]. Next, we
outline how each of these adaptations affects a system, following the design principles
discussed earlier. We then illustrate these principles through descriptions of several
systems that we have built and evaluated.

In immediate semantic adaptations, the main display stays consistent; however,
actions triggered by interacting with on-screen elements change according to implicit
cognitive state input. The system may take control of elements such as timing or
actions of elements that are currently displayed, change the effects of input devices, or
adapt autonomy levels. This is the basis of Prinzel and Wilson’s biocybernetic adaptive
automation loops [Prinzel et al. 2000; Wilson and Russell 2007].

In future semantic adaptations, the display does not change, but over time the
underlying functionality may change based on the implicit cognitive state input. An
example of this might be search results, where information can vary in content. Phys-
iological sensors could monitor user state during interaction with the information and
map visual designs with metrics such as engagement or preference. Over time, an
intelligent system could compare the user’s state across different information deliv-
ery mechanisms and slowly gravitate toward personalized interfaces that elicit better
performance and cognitive measures.

In immediate syntactic adaptation, information on screen is modified, filtered, or
emphasized according to a user’s cognitive state. This can be done via methods such
as changing the peripheral data or layering of information on a display and may aid
the focus of the user by making critical information more salient at critical moments.
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Constant updates across the entire interface or changes in the display format may
be jarring and unsettling for users and disrupt their ability to form cohesive mental
models of the system. Instead, subtle modifications to inactive elements on screen may
clarify the display for the user. Here, we can leverage the high temporal resolution
of physiological sensors. Rather than evaluating the entire interface as one cohesive
entity, we can evaluate individual interface elements and personalize them in a way
that they might best serve the user or cater to the user’s current cognitive state.

In a future syntactic adaptation, we change the upcoming layout of a system based
on cognitive state. Combining user state with predictions of how the user will react
to user interface elements, the system can decide on how to appropriately present
information to the user. We can modify the type of visualization or stimuli, level of
detail, number of options initially visible in a menu, or size of visual elements to
provide what might be most suitable for the user.

While these strategies differ in implementation, they follow the high-level design
principles described in Section 4.1 to minimize user disruption and make subtle, mean-
ingful changes to an interface. The context of an application will dictate which strategy
is the most appropriate, and we can suggest best practices based on our experience
exploring several applications using the platform we have built for real-time, implicit
brain input described in Section 3.3.

5. CASE STUDIES

To illustrate the conceptual framework described above, we present case studies from
systems and experiments we have published previously. These systems demonstrate
immediate and future adaptations on the semantic or syntactic level of the user
interface. These case studies also show the flexibility of the real-time adaptive plat-
form (Section 3.3), which supported various calibration, modeling, and classification
approaches in order to provide the appropriate implicit brain input to the interactive
system being studied.

5.1. Immediate Semantic Adaptive Strategy: Adapting Autonomy Levels

One strategy for designing implicit interfaces described previously is to enable immedi-
ate semantic changes via an adaptive backend in the system. We demonstrated this by
integrating the sensing platform with an adaptive robot architecture that could adapt
robot behavior to better support and collaborate with the human operator [Solovey
et al. 2012]. The focus in this project was to adapt the autonomy level of the robots,
based on cognitive state classification. The participant supervised two simulated au-
tonomous robots in a navigation task in which the target was an area with a high
signal strength. This required the participant to constantly switch context between the
two robots, maintaining information about each robot’s current location. This type of
task is similar to the branching scenario described in Section 3.1.2 and has been linked
with increased activation in the prefrontal cortex [Koechlin et al. 1999; Solovey et al.
2011]. The calibration phase consisted of a series of branching and nonbranching
tasks described by Koechlin et al. [1999]. During the classification phase, the par-
ticipant had a graphical input panel to give commands such as “turn right” or “take a
reading” to measure the signal strength in the current location. In addition, the system
implicitly provided cognitive state input and the system could adapt behavior based on
this. One robot went into autonomous mode whenever a branching state was detected,
based on the model built from the calibration data. This allowed the operator to focus
on the other robot’s progress. The robot exited autonomy mode when a nonbranching
state was detected, and the participant was required to give instructions to the robot
about where to explore. In the autonomous mode, the robot would take over the search
task, periodically sensing signal strength and making appropriate course adjustments
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Fig. 4. Brain–computer recommendation system.

to ensure progress toward target location. However, the robot could be interrupted by
the operator and given a command manually and would return to autonomous behavior
after completing requested action.

This system was designed with the principles described earlier. As in most brain and
body sensing systems, the data is noisy and constantly changing. Here, we used the
brain data to change the autonomy level of one of the robots. This does not affect the
primary navigation task, and the user can always provide commands to the robot, even
during autonomy mode. This is similar to if you were working with another human
who may recognize that you are busy and try to help out as appropriate.

5.2. Future Semantic Adaptive Strategy: Information Filtering System

Another strategy for constructing adaptive systems that adhere to good design guide-
lines is to modify the future output of a system with semantic changes. When new
information enters a system, we can use physiological input to modify the selection,
format, or timing of delivery of that information. In particular, when users have little
expectation about the content of incoming information, this adaptation strategy is more
likely to adhere to the high-level design principles of being subtle and unobtrusive. Poor
classifications of state do not severely disrupt the user’s interaction or mental model of
the interface and, as a result, are more robust to misclassification problems that fre-
quently accompany physiological computing systems. As an example, search results,
product recommendations, and suggested music playlists are all personalized based
on information filtering algorithms. The cost of potentially delivering a poor product
recommendation is relatively low compared to the benefit of discovering relevant new
products that may have been previously unknown to the user.

To illustrate this strategy, we describe a study exploring the feasibility of using
fNIRS data as input to information filtering algorithms that suggested improved movie
recommendations [Peck et al. 2013]. By building a functioning movie recommendation
system that reacts to implicit fNIRS input (Figure 4), we demonstrate the potential
of modifying the future output of a system as an adaptive strategy for physiological
computing systems.

5.2.1. Evaluating Brain-Driven Movie Recommendations. During this study, the calibration
phase consisted of sending fNIRS examples to a machine-learning model on known
values, or in this case, movies that we already know the participant likes or dislikes. At
the start of the experiment, we provided participants with a list of movies picked from
IMDB’s list of 250 best movies and 100 worst movies and asked them to select their top
three and bottom three. Participants viewed a timed slideshow of selected movie web
pages during which we recorded their brain activity with fNIRS.
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Fig. 5. Histogram of ratings in the two conditions. We see that brain recommendations tend to be rated
higher—mostly 3s, 4s, and 5s.

In the classification phase, participants viewed two trials (control and recom-
mender conditions), each of which consisted of a string of 20 movie websites, viewed
sequentially. In the control condition, a series of predefined movies with average rat-
ings are used for all participants. This serves as a baseline for a system that is not
driven by brain input. In the brain recommender condition, implicit preference ratings,
as predicted by our fNIRS data classifier, are fed into a movie recommendation engine.
We show the same start movie as the control condition, but new movies are selected
based on previous preference values. For example, the third movie is based on recorded
preferences for the first and second movies.

5.2.2. Improved Recommendations. The study had 14 participants aged 19 to 28. To
evaluate the success of our system, we analyzed two dependent measures:

(1) Recommendation ratings by condition: How did participants rate movies in the
brain recommender condition in comparison to the control condition?

(2) Recommendations over time: A good recommender should improve over time as
it constructs a more accurate picture of the user’s likes and dislikes. Does the
brain-driven recommender give better recommendations over time?

5.2.3. Recommendation Ratings by Condition. The key finding was that the brain recom-
mender provided higher-rated movies than the control condition as the experiment
session progressed. The distribution of all ratings in each condition is displayed in
Figure 5. We would not expect a recommendation system to perform well until it had
seen enough examples to provide suitable recommendations. Running Mann-Whitney’s
U test on movies 14 to 20 revealed a significant effect of condition (the mean ranks
of the control condition and brain recommendation condition were 10.46 and 18.54,
respectively; U = 41.5, Z = 2.88, p < 0.01, r = 0.54). We also found that 125 out of 280
(45%) movie recommendations in the brain condition were unique selections, meaning
that each participant saw an average of nine movies no other participant viewed. These
results support our primary hypothesis that the brain-driven recommendation system
recommended movies that catered to the participant’s individual preferences.
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5.2.4. Recommendation over Time. Independent of the control condition, we find that
recommendations from our system improved over time, suggesting that the preference
model was gradually learning about the user. Across all participants, we analyzed the
median rating given to movies at each time point (1–20) for each condition. For the
brain recommender, we ran a linear regression and found that the total number of
movies seen was a predictor of rating (b = 0.046, t(20) = 2.541, p = 0.021). This means
that over the course of 20 movies, the median recommendation improved by roughly 1
rating point (from 3 to 4 out of 5). The overall model fit was R2 = 0.223. By comparison,
applying a regression to the control condition determined that the number of movies
seen did not predict movie rating (b = 0.004, t(20) = 0.154, p = 0.898).

5.2.5. Discussion. Despite classifying user preference at relatively low accuracy levels,
we were able to increase the user’s satisfaction with the system largely because the
user had very little expectation about future movie recommendations. Again, this acts
as the primary advantage of manipulating the future semantics of a system. We can
view the potential value of this adaptive technique in two ways.

First, we can augment systems that already modify or prioritize future output to
the user. For example, services like Amazon or Netflix already have sophisticated
recommendation algorithms that rely on nonphysiological information sources. In this
case, one can envision Amazon or Netflix combining brain ratings with other implicit
signals, such as purchase history and viewing history, to improve the overall accuracy
of their model. Additionally, the user may be engaged in a high-performance task where
avoiding disruptions is critical. These implicit measures help preserve user attention
because they do not force an externalization of subjective feelings onto a rating scale. In
either case, the role of the brain is minimal, positively nudging the user’s engagement
with information over a long period of time.

Second, we can construct new adaptive systems that have not been able to collect
enough information about the user (either because the user is busy or this is no natural
input mechanism) to modify its future output. For example, we can imagine a car
radio station that naturally adapts its music to individual preferences without any
intervention from the user. Or we could construct a notification system that waits until
an opportune time in order to interrupt users with new emails. In this case, any help we
can provide the user is better than the existing state of the art. If we classify user state
incorrectly, the system will still behave in a manner that is nearly indistinguishable
from its original functionality.

This work provides a simple snapshot of the potential of using brain signals to
modify the future semantic output of a system. With increasing consumer interest
in personalization, we believe that this adaptation strategy has the potential to be
integrated in a number of applications.

5.3. Immediate Syntactic Adaptation: Dynamic Difficulty and Task Allocation

Here, we provide an example of immediate syntactic adaptation in a system for un-
manned aerial vehicle (UAV) path planning. It has been shown that avoiding extended
periods of too low or too high workload in a task may lead to a state of immersion and
increased engagement. We modulated the number of UAVs that an operator controlled
according to signals of low and high workload and were able to decrease operator error
and increase task engagement [Afergan et al. 2014a]. Although modifying information
in an immediate syntactic manner has the potential to disrupt a user’s mental model
of a system, we can mitigate this risk by making subtle changes only when we are
confident of user state and aid the user in staying focused on the task and improving
performance.
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Fig. 6. View of UAV operator simulation. Participants guided UAVs to targets while avoiding dynamic
obstacles.

5.3.1. Study Design. In order to induce periods of known high and low visuospatial
workload during the calibration phase, participants performed 30 trials of a visu-
ospatial 1-back and 3-back task [Baddeley 2003], as described in Section 3.1.1. For
each trial, participants saw 10 stimuli appearing for 0.5 seconds and had 2 seconds to
respond after each. Each trial totaled 25 seconds, and the hemodynamic patterns from
these trials were used to calibrate the system by creating a machine-learning model of
two levels of workload for each participant.

During the classification phase, participants’ task was to guide between three
and seven UAVs to a series of targets while avoiding obstacles that appeared and
disappeared on screen (Figure 6). Operators were instructed that obstacles, shown as
teal octagons, were no-fly zones, and that while UAVs could fly through them, there
would be a large penalty for doing so. If entered, obstacles should be exited as soon as
possible. Leaving UAVs idle for a long period of time would also result in a penalty,
so participants were motivated to balance performing the task quickly and without
collisions.

The participants were instructed that they were part of a team of UAV operators
and that vehicles would be passed off from their control to other operators, and other
operators’ vehicles would be passed to them. Thus, participants were prepared for
vehicles to appear and disappear during the task. To prevent disruption of the user’s
mental model of the scenario, UAVs were only removed if there were no obstacles in its
path, meaning that the UAV should not demand any of the user’s attentional resources
and thus the user would not be distracted by the change.

Based on the implicit brain input, UAVs were removed and added during extended
periods of high or low workload, respectively. In the adaptive condition, UAVs were
added and removed according to brain signals correlating with low and high workload.
After a UAV was added or removed, there was a 20-second period where no addi-
tional vehicles were added or removed. This prevented the user from having to rapidly
switch contexts. In the nonadaptive condition, the simulation did not keep track of user
state and intermittently added and removed UAVs (a random interval between 20 and
40 seconds). This timing was determined based on a series of pilots to correspond as
closely as possible to the average number of additions and removals we observed in the
adaptive condition.
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Fig. 7. We use a slopegraph to plot the effects of condition on UAV operator performance for each participant.
The four measures showed significantly (p < 0.05) better performance in the adaptive condition interface
(upward sloping lines), and at least ten of the 12 subjects performed better in the adaptive condition in each
of these measures.

5.3.2. Increased Awareness. Across conditions, participants controlled roughly the same
number of UAVs over time (no significant difference in number of UAVs). While partic-
ipants completed the same number of successful trials across conditions, their failure
rate was significantly higher in the nonadaptive condition (Figure 7). With a paired
t-test, we found that participants had significantly fewer failures in the adaptive con-
dition (M = 3.25; SD = 2.14) than in the nonadaptive condition (M = 5; SD = 1.95)
(t(11) = 3.17; p < 0.01; Cohen’s d = 0.92). In addition, although there was no signif-
icant difference in the number of obstacles that appeared in the UAVs’ paths across
conditions (since the obstacles randomly moved over time), participants entered an
average of 4.75 (SD = 2.77) no-fly zones in the adaptive condition and 7.42 (SD = 2:81)
no-fly zones in the nonadaptive condition (t(11) = 4.14; p < 0.01; Cohen’s d = 1.2).

Because participants neglected fewer UAVs despite all other factors being consistent
across conditions, we hypothesize that they paid more attention when workload was
manipulated according to the implicit cognitive state input. We also conclude that the
user’s increased awareness in the adaptive condition, as demonstrated by distance
traveled inside obstacles and neglected UAVs, suggests that the adaptive mechanism
successfully preserved the user’s mental model of the scenario while modulating the
challenge level.

5.4. Future Syntactic Adaptation: Toward Personalized Visualizations

Similar to the future content modifications in the fNIRS-driven movie recommendation
engine, we can imagine a system that modifies the future syntactic representation of
content delivered to a user. Such a system would have the same advantage as when we
proposed to modify the future semantics of a system. Most significantly, in scenarios
where users do not have strong expectations about incoming information, modifying
the future syntax may be imperceptible to users, minimizing the negative impact of
misclassifications and noisy input from brain sensors.

As an example, most current visualization systems are created with a “one size fits
all” approach that leverages general design guidelines. However, research increasingly
suggests that a user’s personality, experience, and cognitive state can impact a user’s
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performance and analytical capabilities with an information visualization design. By
monitoring cognitive state as people interact with a visualization, we may be able to
identify the most effective visual designs and personalize future representations with
the end goal of optimizing interaction.

In a study intended to move toward this goal, we used fNIRS to capture brain activity
during user interactions with different graph types [Peck et al. 2013]. In a complex
working memory task in which participants engaged with different visualizations, we
found not only that participants differed in which visual design they believed was most
cognitively taxing but also that this difference was clearly encoded in fNIRS brain data.
As a result, we believe that fNIRS can be sensitive to the cognitive impact of visual
design in analytical tasks, and this information may be used to optimize design to the
user’s current state.

Although there is little existing work that successfully makes syntactic changes in
real time, there is an increasing body of research that suggests that this approach
may be fruitful [e.g., Afergan et al. 2013; Kardan and Conati 2012; Peck et al. 2012;
Steichen et al. 2013]. Thomas and Cook [2005] note that the development of intelligent
systems that can aid users in performing analytical tasks is a significant direction for
visual analytics research. Similar to the success of information filtering systems on
the web, we believe that personalizing the syntax of future information can positively
impact users’ engagement with information and act as a viable adaptation technique
for brain–computer interfaces.

5.5. Case Studies Discussion

These examples of real-time adaptations show that we can improve performance by
using physiological data as a passive input to a system. This input may be particularly
useful because when a user is in a state of information or memory overload, the user will
not have spare cognitive resources to also manually or directly indicate his or her state.
While these examples are particular to fNIRS, they are general enough to be used with
other physiological sensors. However, fNIRS has a number of distinct advantages that
makes it ideal for passive input. It is noninvasive and comfortable and requires a very
short and easy setup. Because the signal is relatively robust to movement artifacts, it
is ideal for situations where the user is performing a task normally. However, fNIRS is
best used for interactive systems that require a slow response indicating a persistent
state, according to specific states that have been measured so far (mainly cognitive
workload and multitasking). In addition, data filtering and feature definition can aid
in classification accuracy.

6. IMPROVING REAL-TIME ADAPTIVE BEHAVIOR

For successful use of brain, body, or other sensor data, interactive systems should
handle noisy signals as well as occasional misclassification or user state. The adaptive
interaction strategies suggested previously minimize the impact of misclassifications.
To further reduce the impact of misclassifications, we can modify the way that a system
triggers adaptations. In this section, we discuss the use of classification probability to
construct more gentle and unobtrusive adaptive systems.

6.1. Modifying Adaptive Mechanism Based on Confidence in Model

Consider our movie recommendation system [Peck et al. 2013], in which the model
was only capable of achieving a reasonable classification accuracy by differentiating
between periods of low and high preference. In a real-world scenario, user preference is
often more nuanced. When users feel uncertain or neutral about a movie, they typically
do not assign ratings of extremely low preference or extremely high preference, as
neither is a fair representation of their state. By extracting a measure of confidence in
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a model’s classification accuracy, it is possible to design a more nuanced approach to
triggering adaptive behavior and avoid extreme, discrete responses by the computer.

In the case of the movie recommendation system, we used a channel-based voting
system to create an ad hoc value of confidence in the user model. In this implementa-
tion, a separate classifier was constructed for each of the 16 information channels on
the fNIRS device (2 probes × 4 distances × 2 wavelengths). Each time the adaptive
system polled the model for a prediction of user state, each channel provided its own
classification of user state, which was then translated into a voting percentage. For
example, if 16/16 channels agreed on a user state, the confidence in that value would
be 100%. If 8/16 channels agreed on a user state, then the confidence in that value
would only be 50%.

A system deployed in a real-world scenario might ignore all classifications that fall
beneath some confidence threshold, ensuring that the information integrated into the
user model is more likely to be reliable. However, due to experimental time constraints,
the movie recommendation system needed to provide a new movie prediction with each
and every movie viewed. Thus, we mapped our confidence values to the 5-star movie
rating system: 50% to 60% confidence in a high-preference classification mapped to 3
stars, 60% to 80% confidence mapped to 4 stars, and 80% to 100% mapped to 5 stars.
While classification is not equivalent to preference intensity, using a graded mapping
strategy allowed us to use a more gentle recommendation when we were uncertain
of the accuracy of our input. As a result, despite having relatively low classification
accuracies in the movie recommendation system, we were able to boost the user’s
median rating of movie recommendations from 3 out of 5 stars to 4 out of 5 stars.

6.2. Modifying Adaptive Trigger Based on Probability Value

One can also use machine learning to provide probability values that help guide our
predictions and adaptations. While a classifier must provide a prediction each time it
is given, many machine-learning techniques can also assign the likelihood that a data
sample belongs to each of the classes. By using these probability values, we can see
how representative a sample is and this can help glean how valuable these predictions
are. This technique has been used for MRI-based diagnosis as well [Kuncheva et al.
2010; Nouretdinov et al. 2011].

We [Afergan et al. 2014a] used the probability values returned from an LIBSVM
machine-learning classifier to determine the probability values of a classification over
time. The UAV simulation kept an 8-second sliding window of prediction values (with
predictions every 0.5 seconds) of low and high workload and only made adaptations
when overall probability was above 80% for that time period for predicting low or high
probability. In order for adaptation to occur, there needed to be several consecutive
high-probability predictions of a common class. This scheme allowed the system to ef-
fectively filter classifications that were likely inaccurate while permitting the confident
predictions to drive adaptation.

7. CONCLUSIONS

In this article, we draw on our experience designing interactive systems that employ
functional near-infrared spectroscopy to overcome as well as complement some of the
drawbacks of other neuroimaging systems for HCI settings. Because it is an emerging
technique, there have been relatively few studies showing specific measurements with
fNIRS and their appropriate use in HCI. This article describes foundational studies
exploring the feasibility and potential of fNIRS for HCI, as well as the real-time plat-
form we have built for studying such systems. With this system, brain activity data
can be used as a continuous input stream to an interactive system, making the system
more in sync with the user and providing appropriate help and support when needed.
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However, the adaptations must be done judiciously in order to help the user. To facili-
tate this, we present a conceptual framework along with design principles and patterns
for designing interfaces that effectively take advantage of supplementary, implicit in-
put channels such as the cognitive state information coming from neuroimaging tools.
These are illustrated by the case studies (Section 5), in which we built and evaluated
several systems that effectively use the fNIRS input to adapt an interactive system to
better support the user.

Implicit, passive brain computer interfaces show promise to increase the bandwidth
between the user and the computing system without additional work or conscious
thought on the part of the user. These are an early step toward computers that can
interpret the user’s cognitive state and adapt accordingly. The ability to capture subtle
changes in the user’s cognitive state in real time opens up new doors in human–
computer interaction research.
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