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ABSTRACT
Passive brain-computer interfaces, in which implicit input is
derived from a user’s changing brain activity without con-
scious effort from the user, may be one of the most promis-
ing applications of brain-computer interfaces because they
can improve user performance without additional effort on
the user’s part. I seek to use physiological signals that cor-
relate to particular brain states in order to adapt an inter-
face while the user behaves normally. My research aims
to develop strategies to adapt the interface to the user and
the user’s cognitive state using functional near-infrared spec-
troscopy (fNIRS), a non-invasive, lightweight brain-sensing
technique. While passive brain-computer interfaces are cur-
rently being developed and researchers have shown their util-
ity, there has been little effort to develop a framework or hi-
erarchy for adaptation strategies.
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INTRODUCTION
I propose a framework and taxonomy to consider implicit in-
terfaces, which use brain data as input to interactive systems,
along with the design principles and patterns I have devel-
oped from my previous work with them. I discuss consid-
erations specific to designing implicit user interfaces based
on functional near-infrared spectroscopy (fNIRS) brain data.
Based on these considerations, I present an overview of ex-
amples of brain-based adaptive systems that we have built
and studied, which illustrate these principles and patterns, and
demonstrate effective use of brain data in human-computer
interaction. My research focuses specifically on signals com-
ing from the brain, but these principles and strategies can be
applied broadly to other physiological sensor data, and this
work has applications in many domains of data analysis in-
volving multitasking or varying cognitive workload.

Using brain, body, behavioral, and environmental sensors, it
is possible to capture subtle changes in the user’s cognitive
state in real time. This opens new doors in human-computer
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interaction research. This information can be used as continu-
ous input to interactive visualization systems, making the sys-
tems more in sync with the user, providing appropriate help
and support when needed. However, brain, body, and other
sensor data are different from most existing input modalities.
To achieve this goal, the interactive system must be carefully
designed to take advantage of this more subtle new class of
input, leading to implicit interfaces. Implicit inputs are user
actions or situational contexts that the system understands as
input, but that were not actively chosen by the user to in-
teract with the system. For interfaces that incorporate these,
the properties of the sensor data must be considered as well
as the user states that can be classified successfully from the
data. While the design principles and strategies are general-
izable and could apply to any type of physiological sensor, I
propose that fNIRS is especially useful for implicit input be-
cause it is lightweight and non-invasive, and allows users to
interact with a system in a natural manner without influencing
the signal.

BACKGROUND

Implicit Input
Most human-computer interaction techniques use explicit in-
put, in which the user consciously manipulates a device (e.g.,
mouse or keyboard) to indicate a desired command or action
in the system. In contrast, passive brain-computer interfaces
(BCIs) are based on “reactive states of the user’s cognition
automatically induced while interacting in the surrounding
system” [16]. Passive inputs assess user state and use that
to help control interaction without direct or intentional effort
from the user. These systems supplement direct input with
implicit input, typically derived from physiological sensors
attached to the user, in order to adjust application parameters
based on user state. Driven by more efficient monitors and the
computational power and algorithms to process large quan-
tities of data in real time, modern technology can more af-
fordably integrate passive systems and has spawned research
into passive biocybernetic adaptation [5]. Such implicit in-
put is fundamental to the fields of ubiquitous computing and
context-aware systems, but mainly focuses on situational and
environmental context, and not on cognitive state as context.
Interactive visualizations can be improved by using the state
of the user as an input to the system, and adapting subtle as-
pects of the interface appropriately.

Adaptations triggered by passive input face two primary chal-
lenges: to accurately model the user’s cognitive state and
to sensibly adjust the system based on this model. BCI
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helps solve the first challenge of passive systems by provid-
ing user models that more directly tap into the source of user
state. Cutrell and Tan suggest that the implicit commands in-
ferred from a user’s changing brain activity may be the most
promising, universal application of BCI [4]. Explicit brain-
issued commands suffer disproportionally from errors and
have a limited range of input, whereas implicit commands
offer purely additional information without the user’s delib-
erate attention, and the user does not see misclassifactions,
nor have to spend additional cognitive resources recovering
from these errors.

fNIRS and Prefrontal Cortex
fNIRS uses near-infrared light to detect levels of oxygenated
and deoxygenated hemoglobin on the surface of the prefrontal
cortex. Light at this wavelength penetrates biological tissue
and bone but is absorbed by hemoglobin in the bloodstream,
and has similar vascular sensitivity to fMRI [10]. Since neu-
ral activity is accompanied by increased oxygen demands in
order to metabolize glucose, much like fMRI, fNIRS can de-
tect activation at localized areas of the brain. For a more in
depth validation of fNIRS signals in comparison to fMRI, we
refer to Strangman et al. [15]. fNIRS detects slow trends of
hemodynamic changes, and is thus more appropriate to detect
overall state rather than event-related responses.

Recently, fNIRS has increasingly been leveraged to research
users because it is considered to be safe, comfortable, rela-
tively robust to movement artifacts, and can be designed for
portability. In addition, it is resilient to head movement, facial
movement, ambient noise, heartbeat, and muscle movement
[7, 13]. This is critical for complex environments where the
user must be able to function freely and normally.

Predictive models have been used to differentiate the fNIRS
signal between levels of workload [12], verbal and spatial
working memory [9], and to determine periods of cognitive
multitasking [14] and levels of expertise [3].

DESIGN PRINCIPLES
Regardless the type of sensor, implicit user interfaces that uti-
lize brain and body sensor data share important characteris-
tics, and together define a new class of user interfaces. First,
by definition, implicit input is passively obtained from the
user. In addition, sensor data is often noisy, is constantly
changing, and is continuous, unlike a discrete menu selec-
tion or mouse click. Further, the machine learning classifi-
cation algorithms only provide estimates of cognitive state,
with some inherent level of uncertainty. The nature of this
input requires careful consideration to ensure successful user
interface design. I outline high level principles that can guide
development of interfaces that can take advantage of implicit
input channels such as those coming from brain and body
sensors. Many of these principles could also apply to other
similar input channels.

For non-disabled users, passive channels of input are most
useful when augmenting other input devices and providing
a supplemental channel that indicates user state, instead of
being the primary source of input in a system. In addition,
because physiological data can be noisy, the adaptations must

be resilient to misclassifications. One way to help prevent
this is to provide a confidence value for predictions, in order
to influence the interface only when the system is certain of
state. Because the prediction might not always be correct,
a visualization designer should avoid irreversible or mission-
critical adaptations. Instead, the adaptations must be used in a
paradigm where the benefits outweigh the costs, and where a
high number of correct adaptations can improve performance
more than the damages from incorrect classifications.

The adaptation should make subtle, helpful changes to the
interface that would not be too disruptive if the user’s state
is misinterpreted. For example, cognitive state information
may be used to change future interactions rather than to make
prominent changes directly to the current display. Other po-
tential types of interfaces would be those with multiple views
or with limited screen real estate. The brain data could be
used to make tradeoffs based on the user’s cognitive state. In-
terface adaptations, which run the risk of causing confusion
and adding to the user’s workload, must be designed carefully
to avoid performance decrements. In particular, care must be
taken to avoid surprising or confusing the user by making un-
expected changes to the interface.

ADAPTIVE STRATEGIES
I propose a novel taxonomy, still in progress, in which adap-
tations are categorized by their target functional level and im-
mediacy. Specifically, adaptations can affect the semantic or
syntactic levels of a system [6], and can be implemented as
either immediate or future changes. From combining these
levels and timing, I propose a 2x2 model of four different
adaptive strategies.

The semantic level of a system refers to the functions per-
formed and the system’s internal values and parameters,
while the syntactic level of a system refers to the sequence
of inputs and outputs, but not the values of these operations
[6, 11]. Thus, we can think of the semantic changes as ones
that affect the behavior of the system and the goals and ac-
tions of a user, whereas syntactic changes are based on the
user interface and do not modify the content of the applica-
tion.

These system changes can be adjusted in two different lev-
els of immediacy. Immediate changes affect the elements
currently on screen or being interacted with, while future
changes adjust variables and elements that have not yet ap-
peared. Immediate adjustments have the advantage of map-
ping directly to the user’s experience and having a direct ef-
fect. However, they need to be done subtly in order to not dis-
rupt user experience. Future changes can be effective because
stronger changes to the system may occur without surprising
the user. However, future changes to the state of the system
may be difficult to implement and evaluate.

I propose that these strategies can be implemented in conjunc-
tion with each other to produce four distinct adaptive strate-
gies for interactive systems: immediate semantic adaptations,
future semantic adaptations, immediate syntactic adaptations,
and future syntactic adaptations. Below, I outline how each
of these adaptations affects a system and then illustrate these
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principles through descriptions of several systems that I have
either built or am currently building.

In immediate semantic adaptations, the main display stays
consistent; however, actions triggered by interaction with on-
screen elements change according to implicit cognitive state
input. The system may take control of elements such as
timing, or actions of elements that are currently displayed,
change the effects of input devices, or even adapt autonomy
levels.

As in the previous category, in future semantic adaptations
the display does not change, but over time the underlying
functionality may change based on the implicit cognitive state
input. An example of this might be search results, where in-
formation can vary in content. Physiological sensors could
monitor user state during interaction with the information,
and map visual designs with metrics such as engagement or
preference. Over time, an intelligent system could compare
the user’s state across different information delivery mecha-
nisms, and slowly gravitate towards personalized interfaces
that elicit better performance and cognitive measures.

In immediate syntactic adaptations, information on-screen
is modified, filtered, or emphasized according to a user’s cog-
nitive state. This can be done via methods such as changing
the peripheral data or layering of information on a display,
and may aid the focus of the user by making critical informa-
tion more salient at critical moments. Constant updates across
the entire interface or changes in the display format may be
jarring and unsettling for users, and disrupt their ability to
form cohesive mental models of the system. Instead, subtle
modifications to inactive elements on screen may clarify the
display for the user. Here, we can leverage the high temporal
resolution of physiological sensors. Rather than evaluating
the entire interface as one cohesive entity, we can evaluate
individual interface elements and personalize them in a way
that they might best serve the user.

In future syntactic adaptations, we change the upcoming
layout of a system based on cognitive state. Combining user
state with predictions of how the user will react to user in-
terface elements, the system can decide how to appropriately
present information to the user. We can modify the type of
visualization or stimuli, level of detail, number of options ini-
tially visible in a menu, or size of visual elements to provide
what might be most suitable for the user.

IMPLEMENTATION AND USER STUDIES

Real-Time Classification
To explore these interactions, I use and built upon a plat-
form to study brain-based adaptive, implicit user interfaces.
It focuses on capturing brain activity from functional near-
infrared spectroscopy sensors, but the main components can
be used for other brain and body sensors as well. This plat-
form expands the functionality of our Online fNIRS Analysis
and Classification (OFAC) system [7] and Brainput system
[14]. The system learns to identify brain activity patterns
occurring as a user experiences various cognitive states. It
provides a continuous, supplemental input stream to an in-
teractive system, which uses this information to modify its

behavior to provide better support for the user. Thus, I can
use non-invasive methods to detect signals coming from the
brain that users naturally and effortlessly generate while us-
ing a computer system.

The main principle of the system is that I calibrate a user
model based on a validated cognitive task known to induce
specific cognitive states (e.g., high workload vs. low work-
load or multitasking vs. non-multitasking). By performing
these known tasks repeatedly, we generate a dataset of la-
beled data. This data set is used in the modeling phase to
build a machine learning model that finds specific patterns in
this data that indicate one cognitive state or another in future,
unlabeled data. I have implemented feature detection, which
decreased the computational complexity of the system, and
improved the runtime and accuracy of the model (as mea-
sured by cross-validation accuracy) using better models and
parameter searching. One of my other additions to the system
is that it also returns confidence values of the classification,
so that we can assess the certainty of the model’s predictions
and only make adaptations when we have high levels of con-
fidence.

UAV Operation

Figure 1. Diagram of our closed-loop dynamic difficulty adaptation en-
gine for UAV adaptation. Raw signals acquired the fNIRS device are
filtered, then used to classify user workload. When we are confident that
the user is in a suboptimal state, we appropriately add or remove UAVs
in order to provide the right amount of work.

I provide an example of immediate syntactic adaptation,
where we directly add or remove work for the user, in a sys-
tem for unmanned aerial vehicle (UAV) path planning. We
[1] hypothesized that avoiding extended periods of too low or
too high workload in this task may lead to flow, a state of im-
mersion and increased engagement. To demonstrate this idea,
we ran a laboratory study in which participants performed
path planning for multiple UAVs in a simulation. We cali-
brated a machine learning model on their signals of low and
high workload and then varied the difficulty of the task by
adding or removing UAVs when we deemed it appropriate.
We found that we were able to decrease errors by 35% over a
baseline condition of random additions and removals. Our re-
sults show that we can use fNIRS brain sensing to detect task
difficulty in real time and construct an interface that improves
user performance through dynamic difficulty adjustment.

Brain-Based Target Expansion
To show an immediate syntactic adaptation, in which physio-
logical signals change how the user interacts with elements on
screen, I introduce a brain-based target expansion system [2].
This system improves the efficacy of bubble cursor [8] by in-
creasing the expansion of high importance targets at the opti-
mal time based on brain measurements correlated to a partic-
ular type of multitasking. We demonstrate through controlled
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experiments that brain-based target expansion can deliver a
graded and continuous level of assistance to a user according
to their cognitive state, thereby improving task and speed-
accuracy metrics, even without explicit visual changes to the
system. Participants performed a primary audio task (audio
recall n-back) while also performing a visual search task with
targets of high and low priority. Participants performed best
on both tasks, earning the most points, and clicked on targets
faster when using a dynamic expansion that reacted to brain
input compared to no expansion or static (always full) expan-
sion. Such an adaptation is ideal for use in complex systems
to steer users toward higher priority goals during times of in-
creased demand.

Future Research: Phylter for Google Glass
As wearable computing becomes more mainstream, it holds
the promise of delivering timely, relevant data to the user.
However, these devices can potentially inundate the user, dis-
tracting them at the wrong times and providing the wrong
amount of information. This can disrupt work or social in-
teractions, and exacerbate the very problems that wearables
such as Google Glass might solve. Can we use this for future
semantic changes, in which we change the information that
we show the user, or future syntactic changes, in which we
only change the visual form of graphics or data shown to the
user?

To solve this, I am building a system Phylter that uses physi-
ological sensing to modulate notifications to the user. Phylter
receives streaming data about a user’s cognitive state (in the
form of machine learning classifications), and receives po-
tential information for the user. It then bases its decision on
whether to deliver the message on the message’s specified im-
portance and prediction about the user’s interruptibility. The
current software is calibrated to receive physiological input
from the fNIRS-based classification system but is generaliz-
able to other input and output devices. It displays and logs
when it receives notifications so that when a system utilizes
the service it knows whether or not the user has received a
message.

I am currently exploring how to best use this system. In a
proof-of-concept pilot, I demonstrated that the software in-
deed sends the notifications at the right time. I am in the
process of conducting an experiment that proves the system
modifications can be meaningful, as well as developing addi-
tional features.

REFERENCES
1. Afergan, D., Peck, E. M., Solovey, E. T., Jenkins, A.,

Hincks, S. W., Brown, E. T., Chang, R., and Jacob, R. J.
Dynamic difficulty using brain metrics of workload. In
Proc. CHI 2014, ACM Press (2014).

2. Afergan, D., Shibata, T., Hincks, S. W., Peck, E. M.,
Yuksel, B. F., Chang, R., and Jacob, R. J. Brain-based
target expansion. In Proc. UIST 2014 (2014).

3. Bunce, S. C., Izzetoglu, K., Ayaz, H., Shewokis, P.,
Izzetoglu, M., Pourrezaei, K., and Onaral, B.
Implementation of fNIRS for monitoring levels of
expertise and mental workload. In Foundations of
Augmented Cognition. Directing the Future of Adaptive
Systems. Springer Berlin Heidelberg, 2011, 13–22.

4. Cutrell, E., and Tan, D. BCI for passive input in HCI. In
Proc. CHI 2008, ACM Press (2008).

5. Fairclough, S., Gilleade, K., Ewing, K. C., and Roberts,
J. Capturing user engagement via psychophysiology:
measures and mechanisms for biocybernetic adaptation.
International Journal of Autonomous and Adaptive
Communications Systems 6, 1 (2013), 63–79.

6. Foley, J. D., and Van Dam, A. Fundamentals of
interactive computer graphics. Addison-Wesley Systems
Programming Series, Reading, Mass.: Addison-Wesley,
1982 1 (1982).

7. Girouard, A., Solovey, E. T., and Hirshfield, L. M.
Distinguishing Difficulty Levels with Non-invasive
Brain Activity Measurements. INTERACT 2009 (2009),
440–452.

8. Grossman, T., and Balakrishnan, R. The bubble cursor:
enhancing target acquisition by dynamic resizing of the
cursor’s activation area. In Proc. CHI 2005, ACM Press
(2005).

9. Hirshfield, L., Gulotta, R., and Hirshfield, S. This is
your brain on interfaces: enhancing usability testing
with functional near-infrared spectroscopy. In Proc. CHI
2011, ACM Press (2011).

10. Huppert, T., and Hoge, R. A temporal comparison of
BOLD, ASL, and NIRS hemodynamic responses to
motor stimuli in adult humans. NeuroImage 29, 2
(2006), 368–382.

11. Jacob, R. J. K. Using formal specifications in the design
of a human-computer interface. Communications of the
ACM 26, 4 (1983), 259–264.

12. Peck, E. M., Afergan, D., and Jacob, R. J. K.
Investigation of fNIRS brain sensing as input to
information filtering systems. Augmented Human 2013
(2013).

13. Solovey, E. T., Girouard, A., Chauncey, K., Hirshfield,
L. M., Sassaroli, A., Zheng, F., Fantini, S., and Jacob, R.
J. K. Using fNIRS Brain Sensing in Realistic HCI
Settings: Experiments and Guidelines. In Proc. UIST
2009, ACM Press (2009).

14. Solovey, E. T., Schermerhorn, P., Scheutz, M., Sassaroli,
A., Fantini, S., and Jacob, R. Brainput: Enhancing
Interactive Systems with Streaming fNIRS Brain Input.
In Proc. CHI 2012, ACM Press (2012).

15. Strangman, G., Culver, J. P., Thompson, J. H., and Boas,
D. A. A Quantitative Comparison of Simultaneous
BOLD fMRI and NIRS Recordings during Functional
Brain Activation. NeuroImage 17, 2 (2002), 719–731.

16. Zander, T. O., Kothe, C., Welke, S., and Rötting, M.
Utilizing secondary input from passive brain-computer
interfaces for enhancing human-machine interaction. In
Foundations of Augmented Cognition, Neuroergonomics
and Operational Neuroscience, Springer Berlin
Heidelberg (2009), 759–771.

Doctoral Symposium UIST’14, October 5–8, 2014, Honolulu, HI, USA

16


	Introduction
	Background
	Implicit Input
	fNIRS and Prefrontal Cortex

	Design Principles
	Adaptive Strategies
	Implementation and User Studies
	Real-Time Classification
	UAV Operation
	Brain-Based Target Expansion
	Future Research: Phylter for Google Glass

	REFERENCES 



